Funded by the Dick Vitale Gala in memory of Lauren Hill
We have recently demonstrated that neuronal activity in the cerebral cortex can drive the growth of deadly brain tumors called high-grade gliomas. High-grade gliomas include tumors that affect children, teens and adults, such as glioblastoma, anaplastic oligodendroglioma and the childhood tumor diffuse intrinsic pontine glioma (DIPG). High-grade gliomas are the most lethal of all brain tumors. An important way that brain activity promotes the growth of these brain tumors is through release of a molecule called “neuroligin-3”. The purpose of this project is to develop a new therapy for these deadly brain cancers designed to sequester neuroligin-3 like a molecular sponge. We have shown that such a strategy is effective in principle, and now seek to test and optimize this strategy in preclinical models of high-grade glioma.