Funded by The Stuart Scott Memorial
Cancer Research Fund
Cervical cancer is responsible for 15% of cancer-related deaths in women worldwide, with highest frequency occurring in resource-limited settings. In addition, incidence and mortality rates are disproportionately higher in African-American and Hispanic populations within the United States, compared with other ethnic/racial groups.
Many patients die of cancer either because it spreads to other body organs (metastasis), or because the cancer grows again in the same organ (recurrence). In cervical cancer, 90% of recurrence cases occur within 3 years of diagnosis, and less than 5% of these patients survive beyond 5 years. It is therefore essential to find ways to predict the likelihood of tumor recurrence in order to improve the management and prognosis of cancer patients.
We hypothesize that the biological events that lead to tumor recurrence are already at play, even at the time of treatment. In particular, we believe that several biological molecules (human, viral and bacterial) play role in this complex process. We therefore seek to identify and compare these factors in surgically removed cervical tumors and their adjacent normal tissues between 2 groups of women: those with tumor recurrence within 3 years of surgery, and those without recurrence despite longer follow-up. We hope to identify differences in the relative abundance of these biological molecules that will serve as sentinels (we call them biomarkers) to warn us of the likelihood of tumor recurrence. This work has the potential to lead to the development of diagnostic tools for predicting and preventing recurrence in and beyond cervical cancer.