Kevin Cheung, M.D.

Funded by Hooters of America, LLC

Metastatic breast cancer is a result of breast cancer cells that spread to and grow in other organs. It is one of the most feared consequences of breast cancer, and the main cause of death from this disease. Yet, we still do not know what causes breast cancer cells to spread and become resistant to cancer treatment. For years, researchers have attempted to learn what makes individual cancer cells within tumors most able to migrate and grow elsewhere. My lab recently found that the cells that are the most successful at metastasizing do so as clusters. Clusters are also more resistant to cancer treatment. In this project, we will evaluate the different ways that tumor cells within these clusters communicate with each other. By studying these signals, how they are transmitted and their consequences, we may uncover the key vulnerabilities needed to disrupt and destroy tumor cell clusters. We will take advantage of a technology we invented that allows us to study ‘mini-tumors’ in a dish. We will also analyze the genetic code of the various cell types in the mini-tumors. We will then cross-reference what we learn with very large studies of breast cancer patients. Through shifting our mindset from the individual to the collective, our ultimate goal is to identify new leads for the development of therapies to treat – or prevent- metastasis so that we can save lives. 

Location: Fred Hutchinson Cancer Research Center - Washington
Proposal: Cell-cluster induced signaling pathways in breast cancer metastasis
Mailing list button
Close Mailing List