First year of this grant was funded in part by UNICO, in memory of Carl Esposito
Lung cancer is the leading cause of cancer deaths worldwide in men and women, with adenocarcinoma being the most prevalent subtype of non-cell lung cancer in the US. The National Cancer Institute estimates that, in 2016 alone, over 220,000 Americans were diagnosed with lung cancer and close to 160,000 Americans died of their disease. These dismal numbers have not changed significantly over the past decade. Thus, despite enormous advances in our understanding of many of the genetic, epigenetic, and immune events that underlie lung cancer development, a vast amount of knowledge remains to be amassed in order to improve human health. The experiments outlined in this proposal aim to elucidate how an understudied class of genes, called long noncoding RNAs (lncRNAs), participates in lung cancer development and may be harnessed for therapeutic applications. Specifically, we propose innovative approaches to investigate a set of lncRNAs downstream of the key tumor suppressor protein p53. By selecting this pathway, our intent is to dissect a molecular network, which represents a known barrier to lung adenocarcinoma progression, allowing us to discover and characterize lncRNAs that may modulate the transition to advanced and metastatic disease. Our ultimate goal is two-fold – first, to open new avenues in how we explore the significance of lncRNAs in disease states, such as lung cancer, for which few effective treatment options exist, and second, to make the first strides towards deciphering the regulatory code of lncRNAs, thus expanding the druggable space in cancer and ultimately improving patient outcomes.