New cancer drugs are needed to improve quality of care, deliver cures, extend life and prevent relapse. We need to hunt in new places or in places that are not yet fully explored to come up with ideas for better drugs. We have focused on a previously overlooked area that is prime for exploitation, namely how DNA is packaged into cancer cells. DNA is the instruction manual of the cell and must be copied forward when cancer cells divide, a process called DNA replication. However, because DNA is so long it must be packaged correctly into the cell nucleus after it is copied. The cell makes a large number of DNA-packing proteins called histones to accomplish this task. We aim to find ways to attack a cancer cell’s ability to make histone proteins as a new cancer treatment strategy. We expect this be safer (less toxic) than targeting DNA replication itself, and hope to find ways to target it specifically to cancer cells. To do this, we are focused on the details of the DNA packing problem, by digging into the cellular components that control this process and asking molecular questions using the latest technologies. We want to understand how this process works better and how it goes awry in cancer cells so that we can exploit our findings for new drugs.
Joshua Gruber, MD, PhD
Location: Harold C. Simmons Comprehensive Cancer Center - Texas
Proposal: Targeting Chromatin Synthesis for Cancer Therapy