High-grade gliomas represent the leading cause of brain cancer-related death in both children and adults. A fundamental shift in our approach to glioma therapy is thus in dire need. Though much of cancer research has focused on attacking the malignant tumor cells, our focus here is to target the surrounding tissue that provides growth cues for the cancer to thrive. I recently discovered that one important cue for pediatric gliomas is the activity of neurons within the brain. We found that pediatric gliomas grow at a faster rate in response to elevated nervous system activity. Our work has led us to the discovery that these tumors directly communicate with electrically active neurons by plugging into the neuronal network to receive growth signals. These studies highlight the unexplored potential to target neuron-glioma circuit dynamics for therapy. We propose to take a unique new approach to treating these cancers by interrupting the electrical activity across these cancerous circuits. We aim to reframe our understanding of these tumors by investigating how they integrate electrical inputs and hijack normal mechanisms of brain development. A comprehensive understanding of these dynamic network interactions may lead to new therapeutic interventions aimed at normalizing the tumor microenvironment.
Humsa Venkatesh, PhD
Location: Brigham and Women’s Hospital - Boston
Proposal: Normalizing Dysregulated Neural Circuit Activity for Adult Glioma Treatment