Funded by the St. Louis Blues in support of Hockey Fights Cancer powered by the V Foundation
Therapies that modulate the immune response avoid the harmful side effects of standard cancer therapies and also have the potential to be more effective and longer-lasting. The most successful immune therapies to date rely on engineering a specific type of immune cells, T cells, to target and kill cancer cells. These therapies can be curative for some, but unfortunately still do not achieve their potential of cure for most. Our lab has identified a specific molecular pathway responsible for controlling the function of these immune cells. The goals of this project are to first understand how the driver of this pathway, a protein called BACH2, regulates engineered T cell function. Second, we aim to use advanced protein engineering tools to control the activity of BACH2, allowing us to thereby control engineered T cell function at will. If successful, these studies will shed light on a previously under-appreciated pathway that lies at the center of T cell function. Further, they will layout a pathway for “remote control” of BACH2 and nearly any T cell molecular program, allowing precision control of this potent anti-cancer therapy.