Facilitate the transition of projects from the laboratory to the clinic. Translational researchers seek to apply basic knowledge of cancer and bring the benefits of the new basic-level understandings to patients more quickly and efficiently. These grants are $600,000, three-year commitments
Funded by the Constellation Gold Network Distributors
Diffuse large B cell lymphoma (DLBCL), the most common form of non-Hodgkin lymphoma, can often be cured with chemotherapy. However, DLBCL will relapse in ~40% of patients. When this happens, currently available treatments are usually not effective. Treatments for relapsed DLBCL also cause many side effects that affect quality of life. Programmed death-1 (PD-1) blockade immunotherapy has been very effective in treating a number of human cancers, and is generally well-tolerated by patients. Unfortunately, PD-1 blockade therapy has not been very effective for patients with relapsed DLBCL. Therefore, we need to define biological markers that identify DLBCL patients who are likely to benefit from this type of treatment. In search of such a marker, we found that DLBCLs with an increased number of genes for the partner of PD-1, known as programmed death-ligand 1, were associated with strong evidence that an immune response had been generated against them. We will now test whether lymphomas with PD-L1 gene duplications will be more likely to shrink after treatment with PD-1 blockade therapy, and we will also attempt to determine what other features of these lymphomas are important in determining whether the immune system can recognize them. We expect that the knowledge gained from our studies will improve outcomes for patients who have DLBCL that has relapsed.
Funded by the Constellation Gold Network Distributors in honor of the Dick Vitale Gala
Children with liver cancers are hard to cure, if the tumor cannot be removed by surgery or has spread to distant organs. Current therapies cause significant toxicity and don’t work well against large tumors. These children need new approaches and immunotherapy may be a good solution. Immunotherapy relies on the body’s own infection and cancer fighting system.
A type of immunotherapy uses special white blood cells called T cells. T cells can be collected from patients and engineered with a molecule called chimeric antigen receptor or CAR. These CAR T cells can be infused back to patients to destroy the cancer cells.
We developed several versions of CARs which recognize glypican-3. This molecule is expressed in pediatric liver cancers. We systematically tested T cells expressing these CARs in preclinical models of liver cancer. We selected the CAR with the strongest antitumor activity. Now T cells expressing this CAR will be tested in a Phase 1 clinical trial in children.
With the help of the V Foundation, we will examine changes in the genetic programming of CAR T cells. We will evaluate the CAR T cell product, peripheral blood and biopsy samples. Our goal is to define the interaction between the CAR T cells and the tumor.
Our body’s immune system recognizes and destroys foreign invaders such as infections or cancer. Malignant tumors try to outsmart and hide from the immune system. Therapies that activate T cells, a key part of the immune system, are effective against multiple cancers. Myeloid cells are a second important part of the immune system. Myeloid cells can be activated by removing a protein called p50. Our laboratory finds that infusion of myeloid cells lacking p50 into mice leads to shrinkage of several types of cancer, including prostate and pancreatic cancers. We now seek to further improve the effectiveness of myeloid cells lacking p50, to develop human myeloid cells lacking p50 suitable for use in patients, and to evaluate the ability human myeloid cells lacking p50 to shrink human prostate and pancreatic cancers growing in mice. We anticipate that completion of these studies will allow us to begin clinical trials testing the benefit of human myeloid cells lacking p50 as a novel treatment for multiple cancers.
Immunotherapy has revolutionized cancer treatment. Immunotherapy drugs work with the immune system, which normally fights intruders such as viruses, to kill cancer cells. One approach involves taking down defenses set up by cancer cells to escape immune cells. Some tumors, such as kidney cancer, melanoma, and lung cancer, display on their surface a protein (PD-L1) that shuts off approaching killer immune cells. Drugs have been developed that mask PD-L1 allowing killer cells to dispose of cancer cells. Discoveries underlying these developments were recognized with a Nobel Prize in 2018.
However, not all tumors use the same defense mechanism. Here, we propose a novel strategy to identify patients most likely to benefit from drugs masking PD-L1. Up until now, most approaches have focused on evaluating PD-L1 on tumor biopsy samples. However, only one cancer site is sampled, few cells are evaluated, and the results are often unreliable.
We have developed a strategy adapting a radiology test, positron emission tomography (PET), and a PD-L1 masking drug, that allows us to evaluate PD-L1 across all tumor sites. In preliminary experiments, we show that we can label a PD-L1 masking drug so that it can be detected by PET. We then show, using patient tumors transplanted into mice, that we can identify tumors with high PD-L1.
Our goal is to evaluate immuno-PET (iPET) in patients in a clinical trial. If successful, iPET will better match patients to their immunotherapy drug, and identify patients unlikely to benefit and for whom other strategies should be developed.
Funded by the Stuart Scott Memorial Cancer Research Fund
Lung cancer is the main cause of death in the world. For unknown reasons, African Americans (AA) have more aggressive lung cancer compared to Caucasians. Recently, immunotherapy demonstrated that one out of five of patents have tumor shrinkage. Long term remissions are happening in one out of seven lung cancer patients. This is very exciting, but combinations of 2 or 3 immunotherapy drugs are needed to cure more patients.
We proposed the lung cancer treatment combination that can block tumor blood vessel growth, and boost immune system. We think that this combination approach will cure more lung cancers. We will soon start a clinical study combining two immunotherapy drugs. One out of four patients on our study will be AA. We hope to find immune or blood vessel growth related markers to help predict who would benefit from this drug combination. This can help to use the right drugs for the right patients. In this study, we also plan to investigate why AA have more aggressive lung cancer.
In Aim 1, we will perform detailed analysis of blood proteins and white cells from the blood of patients participating in our study. In Aim 2, we will correlate genes and other markers with response to immunotherapy combination. In Aim 3, we will compare blood proteins and tissue gene levels between AA and Caucasians.
Intrahepatic cholangiocarcinoma (ICC) is the second most common kind of liver cancer. It is a very difficult disease to treat. Only about one out of ten patients live more than five years after the cancer has been detected. There are several different types of ICC. One important type has changes in a gene called the Fibroblast Growth Factor Receptor 2 (FGFR2). Drugs that turn off FGFR2 cause the tumors to shrink, but the tumors eventually become resistant to the drug and begin to grow again. The goals of this project are to understand what causes drug resistance and to develop ways to prevent it from happening. In this project, we will study samples of tumors from patients who are being treated with drugs against FGFR2. We will also make models that allow us to study ICC in the laboratory. Finally, we will use a method that could allow us to create a new kind of drug that is better at turning off FGFR2. We hope that our work will result in new treatments that help patients with ICC to live longer.
About 12% of U.S. women will develop invasive breast cancer over the course of her lifetime. Despite advances in early diagnosis and treatment of the disease, breast cancer remains the most commonly diagnosed non-cutaneous malignancy and the second leading cause of cancer death in American women. Acquisition of resistance to current therapies is a major challenge in everyday clinical practice, which significantly reduces the disease-free survival and overall survival in breast cancer patients. Thus, it is important to develop new therapeutic approaches for circumvention of resistance and also to identify predictive biomarkers for more effective treatment decisions. Our previous work found a protein called EZH2 as a very promising therapeutic target in metastatic breast cancer that becomes refractory to hormone therapy. Several highly selective inhibitors of EZH2 are currently being tested in phase I/II clinical trials in patients with B-cell lymphoma. In this study, we will evaluate the efficacy of these EZH2-targeting drugs in metastatic, endocrine resistant breast cancer. We further demonstrated that DNA methylation of one of EZH2-regulated target genes, called GREB1, is highly associated with EZH2 activity in advanced breast cancer. So we will test whether methylation of GREB1 can be used to identify patients who will respond to EZH2 inhibitors. Results from this clinical study provide a novel targeted therapy for advanced breast cancer and a biomarker for choosing the right treatment. Our work will pave the way for the development of personalized medicine as an alternative approach to fighting metastatic, endocrine therapy resistant breast cancer.
Great strides have been made toward finding cures for cancer, which is expected to strike 1.6 million Americans this year. Although many cancer patients still die from their disease, the overall cancer death rate is declining due to improved detection methods and novel therapies. The exciting development of immune therapy has shown that activating a patient’s own immune system to attack and kill cancer cells can lead to cancer cures and improved life spans for patients with many forms of cancer. However, there are still many patients whose tumors are resistant to immune therapy. We recently found that tumor associated macrophages, immune cells that are found in great numbers in tumors, cause resistance to immune therapy. We identified new drugs that break this resistance to immune therapy; these drugs led to cures in animals with cancer. We will test these drugs in patients with head and neck squamous cell carcinoma, monitoring for changes in biomarkers of immune suppression and tumor progression. We will also identify new immune therapy drug combinations that can improve cancer care. These studies will contribute to the development of novel, effective immune therapies for cancer patients.
Funded in partnership with WWE in honor of Connor’s Cure
Medulloblastoma is the most common malignant brain tumor in children. Medulloblastoma is really made up of four diseases, of which two types: Group 3 and Group 4 account for the majority of cases. The main tumor ‘lump’ in the brain is called the ‘primary tumor’. The primary tumor can spread (metastasize) to cover other regions of the surface of the brain and spinal cord. Most children who die from medulloblastoma die because the tumor has spread (metastasized) and not due to the primary tumor. The most damaging therapies (radiation) for children with Group 3 and Group 4 medulloblastoma are necessary to treat the metastases.
For the most part, medulloblastoma only spreads to the surface of the brain and spinal cord, and not to other organs. According to the textbooks this occurs when cells drop off the primary tumor, float around in the spinal fluid, and then reattach to the brain or spinal cord and start growing again. There really is no evidence or experiments to support this mechanism, just historical speculation. We have now shown that in fact, medulloblastoma spreads through the blood stream—the cells enter the blood stream, and then home back to the brain and spinal cord where they grow and kill the child.
This new understanding of the metastatic process for medulloblastoma offers fresh opportunities to non-invasively diagnose medulloblastoma in the blood, to prevent the metastatic cascade, prevent the progression of metastases, and decrease the toxicity of therapy for children with medulloblastoma.
Cancer is caused by genetic changes (errors), making every cancer unique. Nevertheless, cancers share features that allow them to be grouped into categories or “subtypes.” A tumor’s subtype strongly influences its behavior, including growth rate, likelihood of responding to one therapy versus another, and probability of relapse. Knowing each tumor’s subtype could thus help determine which therapy is best for a give a patient, a concept known as “Precision Medicine.” Currently, subtype can only be determined by in-depth sequencing of tumor tissue, and thus it is not routinely determined in clinical practice.
The goal of this proposal is to develop a rapid, non-invasive, and inexpensive way to determine tumor subtype from a blood test. This is called “liquid biopsy,” and it is playing an increasingly important role in cancer care. Because liquid biopsies are non-invasive (i.e. they do not require surgery or other procedures), samples can be obtained repeatedly over a course of therapy, allowing better clinical decisions to be made.
Colorectal cancer (CRC) is the second-leading cause of cancer death in the United States, where it has a disproportionately lethal effect on African-Americans. Recently, a consensus panel concluded that the disease has four major subtypes based on patterns of gene expression (which genes are “on” or “off” in the tumors). In this proposal, we will use these definitions to perform subtyping from liquid biopsies. In the future, the approaches we will develop here will be applicable to all cancers, not just those affecting the colon and rectum.