The immune system is our body’s defense against cancer and other threats. Recently developed drugs enable a patient’s immune system to attack cancer and potentially destroy it. These drugs that enlist the immune system have revolutionized cancer treatment. However, despite successes, not all patients respond to these exciting new drugs. Cancers that do not respond to these drugs are known as “cold” tumors because they prevent an attack by immune cells. This breakdown occurs because many cell types must communicate effectively with one another for an immune response against cancer to occur – cancer disrupts this process. We will test whether immune cells can be improved, such that they are resistant to the miscommunication that cancer causes. Normally, immune cells use signals to communicate with each other. Cancer either blocks these signals or replaces them with ones that are misleading. Our goal is to restore the signals needed by immune cells so that they can mount an effective and sustained attack against cancer. To realize this goal we have developed activators of these signals. We will determine which of these signal activators can protect immune cells from being misled or disabled by cancer. Our long-term goal is to improve cancer treatment options by developing these signal activators into new therapies that allow a patient’s immune cells to attack a cold tumor.
Adam Courtney, PhD
Location: University of Michigan Rogel Cancer Center - Michigan
Proposal: Modulating JAK-STAT signaling in cancer