Bingfei Yu, PhD

Funded by Hooters

T cell therapy, like CAR-T, utilizes our body’s own immune defense to fight against cancer. While CAR-T therapy has worked well for some types of blood cancers, it faces challenges in solid tumors like breast cancer. One problem is that CAR-T cells don’t kill cancer cells effectively in the suppressive environment of solid tumors although they can target them. They can also cause harmful side effects by over-releasing cytokines in the body. Another challenge is that making CAR-T cells from a patient’s blood takes a lot of time and money. To overcome these challenges, my lab is developing programmable viral particles that can target tumor like CAR-T cells while bypassing the limitations of CAR-T therapy. In this project, we will engineer CAR-T mimic viruses that can target breast cancer cells and deliver gene circuits to them. These gene circuits can make cancer cells suicide or reprogram them to turn “cold” tumor “hot”. The unique feature of these viral particles lies in their ability to target and rewire tumor environment, their ease of manufacturing, and compatibility with evolving gene circuit technologies. We hope that these innovative anti-tumor viruses will become a versatile and accessible treatment that can synergize with other therapies to enhance cancer treatment.

Location: USC Norris Comprehensive Cancer Center - Los Angeles
Proposal: Targeted anti-tumor therapy by programmable viral particles
Mailing list button
Close Mailing List