Christian Dibble, Ph.D.

Funded by the Stuart Scott Memorial Cancer Research Fund

Normally, the cells of our body grow and divide only when needed. In cancer, however, this organization breaks down and cells grow out of control. Our lab studies signaling pathways that act as the cell’s circuitry and control when it grows and divides. We also study cellular metabolism, which consists of the chemical reactions a cell uses to turn nutrients into energy and cellular building blocks. Growth signaling pathways are often what become mutated and abnormally activated in cancer, in part, because they play important roles in controlling metabolism. We are particularly interested in a critical metabolic cofactor known as Coenzyme A, which is required to produce cellular energy and building blocks. We have gathered evidence that some cancer cells may have a greater need for Coenzyme A compared to normal cells. Therefore, it may be possible to kill certain tumors before damaging normal tissues by targeting Coenzyme A metabolism. We will characterize specific mutations that may make cells vulnerable to this treatment, and test this treatment concept in cancer cell cultures and mouse tumors. Our basic research into whether this treatment has promise is the necessary first step towards developing a potential new drug that may one day be used to successfully treat patients.

Location: Beth Israel Deaconess Medical Center - Massachusetts
Proposal: Understanding and Exploiting Deep Deletions within the Coenzyme A Biosynthetic Pathway in Cancer
Mailing list button
Close Mailing List