Joelle Straehla, MD

Funded by the Dick Vitale Pediatric Cancer Research Fund with support from the Scott Hamilton CARES Foundation

One major challenge in treating any type of cancer is resistance, or when a cancer stops responding to a certain type of drug or therapy. Some cancer cells may become resistant my changing the way they read and write their DNA, or the genetic blueprint in the cell nucleus. Other cells may change the way proteins are expressed on the surface, which can change their shape or ‘stickiness’ and ability to move in the body.  When doctors can understand exactly how cancer cells become resistant to a certain drug, they can sometimes combine two or more drugs together to overcome this.

For some new classes of drugs, we have not even begun to explore how cancer cells might become resistant. One of these classes is nanoparticle drugs, which usually involves bringing together molecules like fats or polymers to help delivery drugs into certain cells. The goal of this research project is to identify the ways that pediatric cancer cells can become resistant to nanoparticle drugs, and find new drug combinations that are more effective and less toxic to children with cancer. Many lab-based studies of nanoparticles are performed in common cancers of adulthood such as breast cancer, and this has led to new treatments in the clinic, but there have been very few studies of nanoparticle drugs in childhood cancer. Currently, there is only one nanoparticle drug approved for use in children. By studying resistance to nanoparticle drugs in a deadly childhood brain tumor, we can take the first step towards a new clinical treatment for these children.

Location: Seattle Children's Hospital - Seattle
Proposal: Resistance and sensitization mechanisms of nanoparticle delivery to pediatric diffuse midline glioma
Mailing list button
Close Mailing List