Eva Hernando-Monge, PhD

Most people who die from skin cancer died because their cancer has spread to the brain. Recent progress in treating patients whose cancer has spread to other organs has not kept pace for patients in whom skin cancer spread to the brain. At least part of the reason for this is likely because the environment in the brain is so different from other parts of the body. To address this urgent need for better treatments developed specifically for patients with skin cancer who then develop brain tumors, we looked for genes that might help cancer cells that spread from the skin to adapt so they can do well in the brain. We have identified a molecule that explain how it might help skin cancer cells to adapt to the brain. Already, we have encouraging evidence of how this molecule allows tumor cells to survive and grow inside the brain. Equally exciting is that there are already ways to block this gene function by taking a pill or injection, which will allow us to test if we can prevent or reverse the spread of skin cancer to the brain in our models, and eventually in patients. However, we first need to better understand exactly how important this process is in helping skin cancer cells to adapt to the brain microenvironment, and gather more information about how this gene seems to help skin cancer cells to invade the brain and adapt to a new environment.

Kelly Bolton, MD, PhD

Myeloid neoplasms (MN), including acute myeloid leukemia (AML) and myelodysplastic syndrome (MDS), are fatal diseases because they are highly resistant to therapy. Ultimately, efforts at preventing MN might be the most successful way to eradicate this disease. Clonal hematopoiesis (CH) is thought to be the origin of MN. CH is a process whereby a hematopoietic stem or progenitor cell (HSPC) acquires a mutation (alteration in the nucleic acid sequence) that leads to a growth advantage compared to normal HSPCs. CH can be detected many years prior to a person developing MN but as of yet, there are no established therapies to prevent progression of CH to MN. We hypothesize that CDK4/6 inhibition might be a potential treatment to prevent MN through halting the progression of CH. Here we seek to: 1) further characterize the potential of CDK4/6 inhibitors to prevent CH expansion through analysis of pre-existing clinical trial data; and 2) using mouse modeling evaluate the potential of CDK4/6 inhibitors to inhibit CH independent of chemotherapy. If successful, this work will justify the development of clinical trials using CDK4/6 inhibitors to prevent CH from progressing to MN in high-risk populations. In the long term, we hope to use targeted approaches to eradicate high risk CH mutations to prevent the development of MN.

Sarah Adams, MD

Immune therapy has introduced a new way to treat cancer. One type of immune therapy is called PD1 immune checkpoint inhibition (ICI). PD1 ICI has enabled some people with melanoma and other cancers to live longer. These people have specific features on their tumors that are called biomarkers. People without these biomarkers do not respond as well to PD1 ICI therapy.

Our lab recently showed that a combination of two drugs can completely clear tumors in mice. One drug is a type of immune therapy called CTLA4 ICI; the other is an oral cancer drug called a PARP inhibitor. We developed two clinical trials to test this combination in people.
In the first clinical trial, we showed that people who lived longer had a new biomarker called VSTM5. In the second clinical trial, we will confirm that this biomarker predicts who will live longer when given this drug combination.

In this project, we will study why the VSTM5 biomarker predicts a response to the CTLA4 ICI therapy. We will use these results to select people who are likely to respond to CTLA4 ICI therapy. Our goal is to help more people get immune therapies that help them. We also want to help develop new types of treatments for ovarian and other cancers.

Ly Vu, PhD

Acute myeloid leukemia (AML) is one of the most common and aggressive types of blood cancers. Even though we have made exciting progress and have stronger treatments available, around 30% of AML patients who receive treatment will experience a relapse and have a very low chance of survival. Therefore, we need to figure out how these diseases develop and become resistant to treatment. It has been proposed in AML, there are certain cells that have stem cell-like qualities, which allow them to evade therapy and cause the cancer to come back even after treatment. In this project, we will use advanced techniques to investigate how these cells acquire such characteristics by having specific chemical changes on messenger RNAs. Our ultimate goal is to develop new treatments that can improve the lives of people suffering from these deadly diseases.

Christina Towers, PhD

Pancreatic cancer kills just about every patient that has it. Patients are first seen with advanced disease and rarely respond to current treatments. More advanced therapies are needed to save lives. Recent studies suggest that pancreatic cancer cells are especially reliant on cellular recycling processes for growth. Mouse models of pancreatic cancer show that blocking these recycling processes can decrease the growth of tumors. These results have led to the launch of several clinical trials. However, initial results from these clinical trials show that pancreatic cancer cells stop responding. The tumors become resistant to blocking recycling pathways. We have made pancreatic cancer cells resistant to these therapies in the lab. We will use these cells to uncover better therapies to prevent resistance and increase patient survival.

Previously, research showed that these recycling processes promote tumor growth. But, in some contexts these same recycling processes can block pancreatic tumor growth. Researchers still don’t know how or when this switch happens. This dual role could contribute to the therapeutic resistance seen in patients. To study this phenomenon, I will use mini-pancreatic organs, called organoids, that can be grown in the lab. For the first time, we will be able to study the mechanisms that regulate the dual roles of cellular recycling in pancreatic cancer. Together these studies will allow us to target the tumor promoting functions of the recycling pathways while preserving the tumor blocking functions. This will prevent resistance and increase patient survival.

Christina Glytsou, PhD

Acute Myeloid Leukemia (AML) is the most common and deadliest blood cancer in adults. In 2022, over 11,000 AML patients sadly lost their lives in the USA. The treatment options for AML have stayed the same for many years. But in 2018, a new oral medication called Venetoclax was introduced as a potential breakthrough for AML treatment.

Normally, when our cells become damaged, they have a way of self-destructing called apoptosis. It helps stop any defects from spreading in our bodies. Unfortunately, cancer cells, including those in AML, don’t follow this program and become “immortal,” spreading and causing trouble. Venetoclax is designed to make those cancer cells self-destruct, specifically targeting and killing them.

At first, AML patients showed promising responses to Venetoclax. However, it’s disheartening that about 3 out of 10 patients don’t respond to the medication and in many other patients, AML comes back after treatment.  That’s where our research comes in. We want to understand why some patients don’t respond to Venetoclax and how leukemia cells manage to escape apoptosis triggered by the medication.

Through our studies focusing on the molecular aspects of resistance to Venetoclax, we aim to identify potential targets for new and improved therapies for AML. Our studies will also propose combination treatments that could enhance the effectiveness of Venetoclax. Ultimately, with the knowledge gained from this research, we aspire to lay the groundwork for future clinical trials and develop better and safer treatments that will help AML patients live longer and have better lives.

Sita Kugel, PhD

Funded by the V Foundation Wine Celebration in honor of Mike “Coach K” and Mickie Krzyzewski

Few words inspire more fear than “pancreatic cancer,” which is the third leading cause of cancer death in the United States. Treatments have changed little over recent years despite the fact that researchers have learned a great deal about the genetic mutations that give rise to pancreatic cancer. One challenge is that there are different “subtypes” of pancreatic cancer, thereby making a one-size fits all approach difficult. Tailored therapeutic approaches are desperately needed. While studying pancreatic cancer subtypes, our lab identified that drugs which block a protein called cyclin-dependent kinase 7 (CDK7) could selectively kill the most lethal subtype of pancreatic cancer at extremely low doses. This subtype, referred to simply as basal, makes up ~25% of pancreatic tumors and has the worst overall survival. Further, because the drug works at such low doses, we may be able to treat patients at doses that do not cause significant toxicity. Here, we propose to study a drug that inhibits CDK7, in patients with early-stage pancreatic cancer following chemotherapy and before surgery. Concurrently, we will test new pancreatic cancer treatment strategies and drug combinations in mouse models of pancreatic cancer. We will validate and search for new blood markers of treatment response and drug resistance. Finally, we will identify pathways that allow cancer cells to survive CDK7 inhibition and determine whether other drugs can be added to enhance this therapy. The ultimate goal of our research is to provide a new targeted treatment option and hope to pancreatic cancer patients.

Lesley Jarvis, MD, PhD

Funded by the V Foundation Wine Celebration in honor of Laura Cortez

Radiation therapy is used to treat cancer and is very effective, but radiation can cause side effects in some patients. Scientists have shown that if radiation is delivered to a tumor very, very quickly (termed Ultra-high dose rate or FLASH radiation therapy), the tumor will still die, but the patient will have fewer side effects. This phenomenon is called the “FLASH effect”. However, this new type of radiation is very challenging to deliver and to be certain it was delivered correctly, because it is given so fast (less than a second). We need to make special machines and tools before this treatment can be used optimally for patients. The main goals of this study are to develop these new tools and to conduct a clinical trial to test the safety and feasibility of this new type of radiation. The first trial we will run will test this treatment in patients with lymphomas that involve the skin. Finally, building on the experience using this new (UHDR) radiation for lymphoma treatment, we will prepare and design a clinical trial for testing this treatment in breast cancer, a very common cancer. The overall goal of this project is to reduce the treatment related side effects of radiation, while maintaining or improving cure rates.

Julia Carnevale, MD

Funded by the V Foundation Sonoma Epicurean in honor of Leslie Sbrocco

CAR-T cell therapy is a type of therapy where a cancer patient’s immune cells, called T cells, are removed from the patient, altered in the laboratory to make them recognize cancer cells, and then given back to the patient. These CAR-T cell therapies have been unbelievably successful for liquid cancers like leukemias and lymphomas, however they have not yet been very successful for patients with solid tumors. Recently, a clinical trial of a certain kind of CAR-T cells for patients with stomach and pancreas cancers showed that CAR-T cells can fight these cancer cells in the body, but the patients only had short responses and their tumors came back. CAR-T cells need to be good serial killers of cancer cells, however they can often get tired in battle and stop working well. We want to apply our knowledge of gene engineering to make new and better versions of these CAR-T cells that do not tire quickly and can therefore fight cancer for longer. We do this by making different kinds of alterations in the genes of the CAR-T cells that give them more endurance, changing them from sprinters to long-distance runners. We can also make entirely new CARs (the part of the CAR-T cell that recognizes the tumor cells) that can bind the tumor cells with slightly different strengths, which we know can also make the cells less exhausted in battle. If successful, we will push these CAR-T cells to new heights, achieving longer remissions for patients battling gastrointestinal cancers.

Ashwani Rajput, MD, FACS

Funded by the V Foundation’s Virginia Vine event

Washington, D.C., has some of the highest cancer death rates in the United States, especially among the the Black and Latinx communities in Wards 7 and 8. This is caused by differences in living conditions that make it hard for Ward 7 and 8 residents to get trusted information on ways to avoid cancer, as well as cancer screening that can find the disease early when it is more treatable.  This means many women in Wards 7 and 8 find out they have breast cancer when it is farther along, harder to treat, and may not be curable. This work, through the Johns Hopkins Kimmel Cancer Center in the National Capital Region and Sibley Memorial Hospital, can help to address these differences.

To help fix these disparities, the first step is to share information with communities on ways to lower the chances of getting cancer and the tests that can find it early. We will begin with a focus on preventing and detecting breast cancer. Working with the community, we hope to help more women stay healthy and never need to be treated for breast cancer. Our educators will give coaching on ways to live a healthy life – like through diet, exercise, and how to quit smoking – as well as how and when cancer screening should be done so it can be found early. It is our hope that these efforts will mean that fewer women will be diagnosed with breast cancer, and those who are will have a better chance of surviving the disease.

Mailing list button
Close Mailing List