Funded by the Dick Vitale Pediatric Cancer Research Fund
Neuroblastoma is a childhood cancer that develops from nerves outside of the brain. Half of these cancers spread and cause high rates of death despite treatment. Many researchers study how proteins impact cancer growth and spread. Proteins work differently when sugars are attached to them. Sugars are added to proteins through a process called glycosylation, and the way that sugars are added is different in adult cancers. Few people have studied how glycosylation changes the behavior of childhood cancers. We have applied new technology to studying neuroblastomas and found that a certain sugar, fucose, is decreased in advanced tumors. We will extend our work and look at how sugars change when cancer cells are treated with chemotherapy. We found that decreased levels of fucose increases the ability of certain immune cells to find neuroblastoma cells. We have proposed studies to determine how proteins joined to fucose change how neuroblastomas are recognized by white blood cells. The proposed work will be the first use of this technology to define how cancers cells change their sugar patterns to avoid death when treated with chemotherapy.
Our research project focuses on improving the lives of women battling breast cancer by increasing their participation in clinical trials. Clinical trials are studies that help us find better ways to treat cancer. Right now, breast cancer is a big concern, especially for Black and Hispanic women. We want to change that.
We plan to host special events in South Florida where women can learn about clinical trials in a simple way. We will have experts talking about what clinical trials are, who can join, and what the benefits and drawbacks might be. These events will be in different counties like Miami-Dade, Broward, and Palm Beach. We know each place has its own challenges and needs, so we’re adapting our approach to help as many women as possible.
Not many women join clinical trials, which means we don’t learn enough about new treatments. Our project aims to change this by reaching out to communities and making sure everyone has the right information. We especially want to help women from backgrounds that haven’t had many chances to be part of research.
Our goal is to make these events easy to understand and welcoming. We’ll even provide information in Spanish for our Hispanic community. By doing this, we hope to inspire more women to join clinical trials. The research we do together could lead to better treatments and better chances of beating breast cancer. We’re excited about the possibility of helping more women survive and feel better during their fight against cancer.
Funded by the Dick Vitale Pediatric Cancer Research Fund and the StacheStrong Foundation
Clinical outcomes in children diagnosed with high grade glioma and diffuse intrinsic pontine glioma remain very poor. Even with surgical resection, chemotherapy and radiation, most of the tumors eventually relapse. This is primarily because some cancer cells develop resistant to the therapies that doctors prescribe. For the past 50 years, the identities of these therapy-resistant cancer cells remain unknown. Difficulties of obtaining relapsed tumor tissues and limited availability of animal models are the major reasons why we still don’t have new treatment. With the strong support of patients and families, we have developed a panel of animal models by directly implanting brain tumor cells into the brains of immunodeficient mice. We can now use these models to mimic what happens in children but treating the animals with the similar drugs/radiations. These models are very helpful. Indeed, our preliminary study in a small number of models have identified a set of cells expression CD57 as candidate root cells as they were found before drug treatment, remain present after very extensive clinical treatment, and can even survive the most harmful environment with no oxygen and no nutrient. This exciting finding has promoted us to perform a detailed analysis using more animal models to confirm the extraordinary capacity of the CD57+ cells in resisting therapy induced cell king, to understand how they can survive current treatment, and to find new drugs and strategies to selectively kill these seed cells. Our ultimate goal is to find new cure for children with highly malignant gliomas.
Funded by the Dick Vitale Pediatric Cancer Research Fund
Children with muscle cancer commonly develop resistance to therapy. This is a major problem and most kids will die from resistant disease. Our group has developed a new combination of drugs to kill muscle cancers and is now being tested in kids and young adults. Yet, drug resistance to this same combination has been reported in other cancers and may develop in our patients. Our work will uncover how resistance develops and identify a new drug that can restore sensitivity to chemotherapy. This work is important because the new drugs we identify could be used to treat kids in the future.
Funded by the Dick Vitale Pediatric Cancer Research Fund
Acute Lymphoblastic Leukemia (ALL) is a common cancer in kids. There are two types, B-ALL and T-ALL, depending on the type of white blood cells affected. Most kids get better with current treatments, but sometimes the cancer comes back and we can’t help them anymore. That’s why we need new treatments for T-ALL.
We know that certain drugs used in the hospital affect how leukemia metabolism works. So, we wondered if changing the diet could also help. In our lab, we tried different diets on mice with leukemia. Surprisingly, we found that removing just one component of the food (an amino acid), made a big difference. Leukemic mice eating food without this amino acid lived much longer. Now we want to understand why this dietary approach helps and if we can use it in combination with other treatments. We will study mice with leukemia and samples from real patients to see how this amino acid affects cancer. We also want to find out if combining this diet with current treatments works even better.
If our research is successful, we can try it on real patients. We want to see if reducing this amino acid in the diet can make treatments safer and help more kids survive, especially those whose cancer has come back. This research is important because it could give us new ways to treat leukemia and help more kids get better. It might even help with other types of cancer too.
Funded by the Dick Vitale Pediatric Cancer Research Fund
Neuroblastoma (NB) is a type of childhood cancer that is difficult to treat after it has spread throughout the body. Using animals that develop aggressive NB, we found different types of tumor cells that may lead to cancer spread. We are proposing to look very closely at these different tumor cells and determine how they may lead to NB spread and drug resistance in patients. We will also test new targeted drugs for their effects on NB spread and through our studies, new ways to treat aggressive childhood cancer may be found.
Funded by the Constellation Brands Gold Network Distributors in honor of the Dick Vitale Pediatric Cancer Research Fund
Ewing sarcoma is a cancer that is most often diagnosed in teenage children and young adults. There is a need for new therapies for this disease. The goal of our work is to develop new therapies for Ewing sarcoma focused on a drug target called EWS-FLI1. Multiple studies have shown that EWS-FLI1 is a promising drug target for this disease. In a clinical trial called SARC037, we are currently testing a combination therapy that we have shown targets EWS-FLI1. The goal of the current study is to try to understand why some patients in this trial respond to the therapy and others do not. To accomplish this, we will study ways that EWS-FLI1 resists targeting. We will identify molecular differences in tissue collected from patients who had an excellent response to the therapy compared to those who did not respond. In addition, we will test these differences in the laboratory to see how they impact sensitivity to the therapy used in SARC037. The results will guide future clinical studies that seek to target EWS-FLI1. In addition, they will provide insight into how EWS-FLI1 contributes to drug resistance to more traditional chemotherapy.
Funded by the Dick Vitale Pediatric Cancer Research Fund
Brain tumors are the leading cause of cancer-related death in children. While recent advances in neuro-oncology have helped us understand the biology of what is causing brain tumors to develop and grow, many children with brain tumors will still have a dismal prognosis. These tumors can be refractory to upfront treatment, such as radiation or chemotherapy, and there is need for better options. CAR T-cell therapy is a new type of treatment that uses the patient’s own immune cells and modifies them in the lab to recognize and kill cancer cells. CAR T-cell therapies are highly specific to the cancer cells. In our clinical study, we are evaluating the safety and anti-cancer activity of CAR T cells for pediatric patients with brain tumors.
Funded by the Dick Vitale Pediatric Cancer Research Fund with support from the Marc and Peg Hafer Family
Acute myeloid leukemia (AML) remains one of the most difficult leukemias to treat. Pediatric patients with AML have relied on standard toxic chemotherapy and bone marrow transplantation for the past few decades for treatment without any advancement in the development of targeted therapeutics for this disease. The development and clinical investigation of a new class of orally available drugs, called Menin inhibitors, has shown great promise in patients with specific, hard-to-treat subtypes of AML. However, we have recently described acquired resistance to Menin inhibitors through genetic mutation in the Menin gene during treatment. After characterizing and understanding the mutations in Menin, we now aim to try to overcome and possibly prevent resistance with the next generation of Menin inhibitors or with combinations with other drugs that show promise in treating AML. The experiments proposed here will guide the clinical implementation of Menin inhibitors into the standard of care in children with either newly diagnosed or refractory AML. We hope/expect that these approaches will, over time, supplant the need for chemotherapy much as has been the case for targeted therapy in APML, which previously required bone marrow transplantation, but is now cured with two oral therapies that have minimal toxicities.
T cell therapy, like CAR-T, utilizes our body’s own immune defense to fight against cancer. While CAR-T therapy has worked well for some types of blood cancers, it faces challenges in solid tumors like breast cancer. One problem is that CAR-T cells don’t kill cancer cells effectively in the suppressive environment of solid tumors although they can target them. They can also cause harmful side effects by over-releasing cytokines in the body. Another challenge is that making CAR-T cells from a patient’s blood takes a lot of time and money. To overcome these challenges, my lab is developing programmable viral particles that can target tumor like CAR-T cells while bypassing the limitations of CAR-T therapy. In this project, we will engineer CAR-T mimic viruses that can target breast cancer cells and deliver gene circuits to them. These gene circuits can make cancer cells suicide or reprogram them to turn “cold” tumor “hot”. The unique feature of these viral particles lies in their ability to target and rewire tumor environment, their ease of manufacturing, and compatibility with evolving gene circuit technologies. We hope that these innovative anti-tumor viruses will become a versatile and accessible treatment that can synergize with other therapies to enhance cancer treatment.