Funded by Bristol-Myers Squibb
Neuroblastoma is the second most common tumor in childhood accounting for 7% of all children with cancer. There are about 800 new cases of neuroblastoma each year in the US. Treatments for neuroblastoma include surgery when tumors are localized or chemotherapy and radiation therapy when tumor spreads to other parts of the body. Cure rates are high for low-risk children, but only about 50% for high-risk children such as those whose tumor has spread. For these reasons, neuroblastoma is still the deadliest cancer in the childhood. With our research we aim at increasing the cure rates of neuroblastoma, particularly in high-risk children. To achieve this goal, we will harness the immune system of the children by instructing their lymphocytes to specifically identify a molecule called ALK in tumor cells. To obtain the highest potency and accuracy, we will exploit not only one immunotherapy, but rather a novel dual immunotherapy that will combine a cancer vaccine with engineered lymphocytes, both primed to recognize the same ALK target on tumor cells. This novel concept of dual immunotherapy will be tested in mouse models of neuroblastoma and will provide essential information on how the immune system can be exploited to target this tumor. These findings will lay the foundation for future clinical trials that will exploit this dual immunotherapy approach in children.