A set of proteins are highly active in cancer. They can add small groups to a series of target proteins. These uncommon additions are often linked with tumors found in breast, liver, and other tissues. To date, it is still unclear how those aberrant proteins cause cancer. To answer this question, it is crucial to know all the targets that they act on in live cancer cells. But no method has been made available to resolve this key issue. In this project we are aimed to create an innovative platform to achieve this goal. Our research plan will use chemistry and biotechnology to make new tools for target identification. A particular member in this group will be chosen for this work. Because it shows much higher activities in diverse types of cancer. The full range of targets for this protein in live cancer cells will be clearly assigned for each specific type of cells. Moreover, the patterns, levels, and time courses of such additions in live cells can be directly viewed and precisely measured by our creative approach. These findings will lead to unveil the interaction networks of this cancerous protein to guide our further studies. The fundamental knowledge obtained from this work will advance our understanding of cancer. Importantly, it will foster the development of new approaches for cancer detection and treatment.
Yong Zhang, Ph.D.
Location: University of Southern California Norris Comprehensive Cancer Center - California
Proposal: Mapping PARP√4-based Interactome in Cancer Cells